

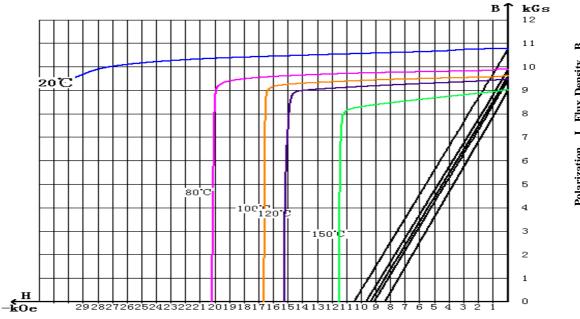
Spacemagnets Europe GmbH

Spacemagnets Serve the World

N-28EH

Sintered NdFeB-Magnets

A neodymium magnet (also known as NdFeB, NIB or Neo magnet), the most widely used type of rare-earth magnet, is a permanent magnet made from an alloy of neodymium, iron and boron to form the Nd2Fe14B tetragonal crystalline structure. NdFeB-magnets are the strongest type of permanent magnet commercially available.


			1		
Magnetic Properites	Characteristic	Unit	Min	Nominal	Max
	Br Residual Induction	Gauss	10400	10600	10800
		mT	1040	1060	1080
	Hcb Coercivity	Oersteds	9800		
		KA/M	780		
	Hcj Intrinsic Coercivity	Oersteds	30000		
		KA/M	2388		·
	BHmax Maximum Energy Product	MGOe	26	27.5	29
		KJ/M ³	207	219	231

	Characteristic	Unit	C//	$\mathbf{C}\bot$	
ite	Reversible Temperature Coefficients (1)				
per	Of Induction, α (Br)	%/°C	-0.12		
ro	Of Coercivity, β (Hcj)	%/°C	-0	-0.42	
Thermal Properites	Coefficient of Thermal Expansion (2)	△L/L per °Cx10 ⁻⁶	7.5	-0.1	
E	Thermal Conductivity	kcal/mhr°C	7.6	5.8	
l ğ	Specific Heat (3)	cal/g°C	0.11		
	Curie Temperature, Tc	°C	310		
70	Flexural Strength	psi	41300		
Other roperites	Plexurar Strength	Mpa	285		
Other	Density	g/cm3	7.6		
	Hardness, Vickers	Hv	620		
Ь	Electrical Resistivity	μΩ.cm	180		

Notes:

- (1) Coefficients measured between 20 and 180 °C
- (2) Between 20 and 180 °C
- (3) Between 20 and 140 °C

Material: N-28EH

10KGs = 1 Tesla

Demagnetizing Field, H

1KA/M = 12.566 Oe1Koe = 79.577 KA/M

Notes: The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size.

Demagnetization curves show nominal Br and minimum Hcj.

Magnets can be supplied thermal stabilized or magnetically calibrated to customer specifications.

Additional grades are available, Please contact the factory for information.

Polarization, J Flux Density,